
A tree-search algorithm for ML decoding in
underdetermined MIMO systems

Gianmarco Romano #1, Francesco Palmieri #2, Pierluigi Salvo Rossi #3, Davide Mattera ∗4

Dipartimento di Ingegneria dell’Informazione, Seconda Università di Napoli
via Roma 29, 81031 Aversa, ITALY
1 gianmarco.romano@unina2.it

2 francesco.palmieri@unina2.it
3 pierluigi.salvorossi@unina2.it

∗ Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni, Università di Napoli "Federico II",
via Claudio 21, 80125 Napoli, ITALY

4 mattera@unina.it

Abstract—It is well known that Maximum Likelihood (ML)
detection for multiantenna and/or multiuser systems has com-
plexity that grows exponentially with the number of antennas
and/or users. A number of suboptimal algorithms has been
developed in the past that present an acceptable computational
complexity and good approximations of the optimal solution. In
this paper we propose a tree-search algorithm that provides the
exact ML solution with lower computational complexity than
that required by an exhaustive search of minimum distance.
Also a two-stage tree-search algorithm is presented based on
the idea that the ML solution is in the set of equilibrium points
of a Hopfield Neural Networks (HNN). The two algorithms work
without any modification both in underloaded and overloaded
(underdetermined) systems. Numerical simulations show that
improvements, in terms of computational complexity measured
as the average number of required sum and/or products, are
encouraging.

I. INTRODUCTION

Given an 𝑁 -dimensional observed vector

y = Gx+w = g1𝑥1 + g2𝑥2 + ...+ g𝑀𝑥𝑀 +w, (1)

where w is Gaussian noise, 𝑥𝑗 ∈ {−1, 1}, 𝑗 = 1, ...,𝑀 and

g𝑗 , 𝑗 = 1, ...,𝑀 are users’ signatures, the problem of optimal

decoding x from y, i.e.

x𝑀𝐿 = argminx∈{−1,1} ∥y −Gx∥2 (2)

is known to be exponentially complex, as the worst-case

computational cost grows exponentially in the number of

users [1]. Eq. (1) is a general model that can represent a

variety of communication systems, as for example CDMA

and MIMO systems. A number of suboptimal algorithm have

been developed as low-complexity alternatives to the ML

decoding. Optimal and approximately-optimal solutions are

available without prohibitive computational cost via branch

and bound techniques [2], sphere decoding [3], lattice-based

sub-optimal approaches [4] and other tree-search algorithms

as the A* algorithm [5]. These algorithms perform well for

underloaded systems, i.e. when the number of users 𝑀 is

less then the signal space dimension 𝑁 , and their use in

overloaded or underdetermined systems, i.e. when 𝑀 > 𝑁 , is

not always possible. Several algorithms have been developed

to tackle the problem of optimal and sub-optimal decoding of

underdetermined systems. In [6] an extension of the sphere-

decoding is proposed based on a geometrical condition. In [7]

an efficient tree-search algorithm for underdetermined system

is presented (see also references therein).

A different approach to ML decoding is represented by

the use of Hopfield Neural Networks (HNN) as proposed

in [8], [9]. In [8] it has been shown that the ML solution

can be obtained through dynamic update of the discrete-

time approximation of the equation of motion of neurons.

That equation may present limit cycles problems when the

update is done in parallel. Furthermore the update rule may

not provide the ML solution since in many cases solution

is not unique and may be a local minimum. In order to

prevent the updating rule to enter in a limit cycle and to force

the dynamic update through increasing likelihood in [10] a

modified HNN approach to ML decoding is proposed, leading

to a family of likelihood ascent sub-optimal detectors (LAS).

These algorithms are sub-optimal and can approach optimal

performances under specific conditions.

We propose two new algorithms for ML decoding based on

a tree-search that gives optimal solutions for both underloaded

and overloaded systems. Both algorithms are based on a

dominance condition, derived from distance computation but

with lower computational complexity, that can be checked at

each node of the tree to reduce the number of visited nodes

and then of the paths on the tree. The second algorithm is

based not only on the dominance condition, but also on the

use of the update rule for a HNN as a necessary condition

for the optimal ML solution in order to reduce the number of

surviving paths. We show that both algorithms present lower

computational complexity with respect to that required by an

exhaustive minimum distance search.

The paper is organized as follows: in Sec. II we present

the two algorithms for ML decoding; in Sec. III we analyze

the computational complexity of both algorithms, measured in

terms of sums and/or products, and show simulation results;

some concluding remarks are given in Sec. IV.

978-1-4244-3584-5/09/$25.00 © 2009 IEEE ISWCS 2009662

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on December 14, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

II. MINIMUM DISTANCE DECODING

Consider the problem (2) and suppose we divide the users

in two sets 𝑎 and 𝑏 with 𝑀𝑎 and 𝑀𝑏 users respectively (𝑀𝑎+
𝑀𝑏 = 𝑀)

G = [G𝑎G𝑏] , x𝑇 =
[
x𝑇
𝑎 x

𝑇
𝑏

]
(3)

The squared distance can be written as

∥y −Gx∥2 = y𝑇y + x𝑇
𝑎R𝑎x𝑎 − 2y𝑇G𝑎x𝑎

+ 2x𝑇
𝑎R𝑎𝑏x𝑏 + x𝑇

𝑏 R𝑏x𝑏 − 2y𝑇G𝑏x𝑏, (4)

where

R𝑎 = G𝑇
𝑎G𝑎, R𝑏 = G𝑇

𝑏 G𝑏, R𝑎𝑏 = G𝑇
𝑎G𝑏. (5)

Now suppose we select only one user, say user 𝑗, in set 𝑎,
(𝑀𝑎 = 1). The squared distance can be written as

∣∣y −Gx∣∣2 = y𝑇y + 𝑥2
𝑗𝑟𝑗𝑗 − 2y𝑇g𝑗𝑥𝑗

+ 2𝑥𝑗R𝑗𝑏x𝑏 + x𝑇
𝑏 R𝑏x𝑏 − 2y𝑇G𝑏x𝑏. (6)

The decision rule is: 𝑥𝑗 = 1 if

−2y𝑇g𝑗 + 2R𝑗𝑏x𝑏 > 2y𝑇g𝑗 − 2R𝑗𝑏x𝑏 (7)

or

−y𝑇g𝑗 +R𝑗𝑏x𝑏 < 0. (8)

Decision on 𝑥𝑗 will not depend on x𝑏 if

∣y𝑇g𝑗 ∣ > supx𝑏∈{−1,1}𝑀−1 ∣R𝑗𝑏x𝑏∣, (9)

or

∣y𝑇g𝑗 ∣ >
∑

𝑖∕=𝑗

∣𝑟𝑗𝑖∣. (10)

We say that, on observation y, user 𝑗 is dominant over his

multi-user interference.

The condition (10) represents a sufficient condition for an

optimal decision to be made, as the multiuser interference is

so small that does not affect the decision on the 𝑗-th user,

i.e. the 𝑗-th user dominates the multiuser interference. Such

condition depends on the correlation among users’ signatures

and also on the received signal. When this condition is not

satisfied no decision can be made ad then no conclusions can

be drawn on user 𝑗.
Consider now the case where some of the users have been

decoded, or simply have been fixed. If we denote with 𝒰𝑑 the

set of the already known users, the dominance condition can

be extended as
∣∣∣∣∣g

𝑇
𝑗 y −

∑

𝑘∈𝒰𝑑

g𝑇
𝑗 g𝑘𝑥𝑘

∣∣∣∣∣ >
∑

𝑖∕=𝑗, 𝑖/∈𝒰𝑑

∣𝑟𝑗𝑖∣ , (11)

i.e. we can cancel out the multiuser interference contributed

by the already known bits. Condition (11) generalizes the

condition (10). If some user 𝑗 is not dominant over his

multi-user interference, it may happen that it is conditionally

dominant, giving rise to a subset of all possible solutions.

A. Tree-search algorithm

Condition (11) can be used for searching the ML solution

on a tree, where each leaf of the tree represents a possible

solution. In the traditional minimum distance algorithm all

leaves are checked, and since their number is exponential

in the number of users, the algorithm has an exponential

complexity. In order to reduce the computational complexity

a reduction in the number of the leaf to be checked can

be achieved based on some criteria. The sphere decoding

algorithm for example only considers leaves corresponding to

points in a sphere, that is equivalent to cut those branches

in the tree whose distance is greater than the radius of the

sphere. However, different criteria for a reduction of possible

solutions can be employed. The idea that we propose is to

use the conditional dominance condition (11) at each node of

the tree. Suppose that we have fixed a user decoding order,

then at each node we can check whether the condition (11) is

satisfied or not. If the condition is satisfied then a decision on

the corresponding user can be made and only one of the two

branches that departs from that node is selected, and half of

child nodes can be cut.

An example is shown in Fig. (1). We have a tree correspond-

ing to an overloaded system with 5 users, and then with 32

possible transmitted bit vectors; at each node a branch on the

right represents a +1 and a branch on the left a -1. The node

pointed by the arrow corresponds to the dominance condition

∣∣g𝑇
3 y − g𝑇

3 g2𝑥2 − g𝑇
3 g1𝑥1

∣∣
𝑥1=1,𝑥2=1

>
∣∣g𝑇

3 g4

∣∣+
∣∣g𝑇

3 g5

∣∣
(12)

Since such condition is satisfied in our example, a decision on

user 3 can be made: 𝑥3 = −1, if 𝑥1 = 1 and 𝑥2 = 1. Note
that at this point there is no need to visit children of the node

(1,1,1). At the end we obtain a set of possible ML solutions,

as shown in Fig. (1), where only 7 out of 32 paths survive.

The ML solution can now be searched only over the reduced

set of possible solutions. The final step of the algorithm

consists of computation of the minimum distance among the

surviving paths on the tree and the received signal, providing

the exact ML solution. In most cases the algorithm offers

substantial improvement on exhaustive ML decoding, as the

number of surviving paths is greatly reduced. Since the al-

gorithm is based on a dominance condition we call it king
algorithm.

The algorithm does not require any matrix inversion as in

similar tree-search based algorithms and can be employed

unmodified both in underloaded and overloaded systems. It

is worth noting that the algorithm returns always the exact
ML solution, and not a sub-optimal solution as done in other

similar algorithm, such as sphere decoding and any other

tree search algorithm based on an heuristic metric. Since the

BER obtained is the same of the minimum distance algorithm,

the only difference between the two is measured in terms of

computational complexity.

663

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on December 14, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

user 1

user 2

user 3

user 4

user 5

Figure 1. Tree-search algorithm for a system with𝑁 = 2 and𝑀 = 5 users and average SNR of 10 dB. The transmitted bit vector is x = (1,−1,−1,−1, 1)𝑇 .
Paths with star nodes are provided by the algorithm. The final steps needs to compute 6 distances and get the minimum.

B. Two-stages tree-search algorithm

One more stage, that may further reduce the set of surviving

paths in the tree-search algorithm, can be added. In [8] it has

been shown that, for a CDMA system, a discrete Hopfield

Neural Networks (HNN), simply made up of matched filters,

may find in many cases the ML solution by updating the

discrete-time approximation of the equation of motion of

neurons

b(𝑛+ 1) = sign
(
G𝑇y − (

G𝑇G−E
)
b (𝑛)

)
, (13)

where E is a diagonal matrix whose 𝑗-th diagonal element is

g𝑇
𝑗 g𝑗 . The update stops when some fixed point is reached. Eq.

(13) may provide several solutions (equilibrium points), that

represent local minima that does not necessarely minimize the

distance from the received signal. The specific equilibrium

point resulting by the dynamic update rule depends on the

initial condition, that in this case coincides with the estimate

of the conventional detector. Only when the set of equilibrium

points contains one element the update rule provides surely

the ML solution. In general the number of equilibrium points

is not known in advance.

In any case the set of equilibrium points must contain the

ML solution and therefore the optimal solution must satisfy

the eq. (13). We can then use such a condition as necessary

condition for the ML solution. Since in most cases the number

of surviving paths in the tree-search algorithm is greater than

the number of equilibrium points the additional stage can

check whether each surviving path satisfies the following

condition

b = sign
(
G𝑇y − (

G𝑇G−E
)
b
)

(14)

and therefore discard those points that are not equilibrium

points.

Fig. 2 shows equilibrium points for the same received signal

in Fig. 1. As shown in the figures, in general the set of decoded

points in the tree-search algorithm represents a super-set of the

equilibrium points, which is the best one could obtain when

no distance metric is employed.

III. COMPUTATIONAL COMPLEXITY

Since the proposed algorithms provide the exact ML so-

lution, performances are measured in terms of computational

complexity to be compared to those obtained with the exhaus-

tive search of minimum distance. We consider as performance

figure the average number of sums and/or products as function

of the number of users.

The computational cost of tree-search algorithm is given by

the sum of two contributions

𝐶𝑇𝑆 = 𝐶𝐷𝐶 + 𝐶𝐷. (15)

𝐶𝐷𝐶 is the cost due to the search on the tree and is

proportional to the number of visited nodes; 𝐶𝐷 represents

the exponential cost of the computation of the minimum

distance, and grows with the number of surviving paths.

664

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on December 14, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

user 1

user 2

user 3

user 4

user 5

Figure 2. Two-stages tree-search algorithm for an overloaded system with 𝑁 = 2 and 𝑀 = 5 users and average SNR of 10 dB. The transmitted bit vector
is x = (1,−1,−1,−1, 1)𝑇 . Paths with circled nodes are equilibrium points. The received signal is the same of the Fig. (1). Note the reduced number of
paths that need to be considered for the final step that computes the minimum distance.

The computational cost due to the tree-search stage of the

algorithm can be expressed as

𝐶𝐷𝐶 =

𝑀∑

𝑖=1

𝑑𝑖𝑁𝑖 (16)

where 𝑑𝑖 is the number of sum and/or products needed for

dominance condition computations at the tree level 𝑖, and 𝑁𝑖

is the number of visited nodes at level 𝑖. Since we cannot

predict 𝑁𝑖, because it depends on the received signal (given

the channel matrix), the overall evaluation of computational

cost needs to be averaged over several transmitted signals.

Given a number 𝑁𝑠 of surviving paths on the tree, the cost of

computation of euclidean distances is written as

𝐶𝐷 = 𝑑𝑁𝑠, (17)

where 𝑑 is the number of sum and/or products for computation

of a single euclidean distance.

The key advantage of the algorithm is the expected great

reduction of the number of the visited nodes and then of sur-

viving paths. In the best-case scenario, if in every visited node

the dominance condition is satisfied, the algorithm returns a

unique solution that corresponds to the ML solution. In this

case only 𝑀 nodes are visited and the overall computational

cost is due only to 𝐶𝐷𝐶 . In general the number of visited

nodes is greater than 𝑀 because the condition (10) is not

always satisfied. Since when there is no dominance at one

node no final decision on the user 𝑗 can be made and no

branches can be cut, in the worst-case scenario no dominant

user is found and no path can be discarded and no reduction

in computational complexity can be obtained. In this case we

have the same computational cost of the exhaustive search of

minimum distance. Therefore the efficiency of the algorithm

depends on the existence of dominant users and conditionally

dominant users.

The two-stage tree-search algorithm presents an additional

step that adds up a term that takes into account the average

number of sum and/or products needed to check which of

the 𝑁𝑠 surviving paths are equilibrium points and that can be

expressed as

𝐶𝐸 = 𝑑𝑒𝑁𝑠 (18)

where 𝑑𝑒 is the cost of checking the equilibrium condition

(14). Even though now the overall cost is given by the sum

of three contributions

𝐶2𝑆 = 𝐶𝐷𝐶 + 𝐶𝐸 + 𝐶𝐷, (19)

the increase due to 𝐶𝐸 is might be compensated by the

reduction of the number of surviving paths for which distances

have to be computed.

We have performed some simulations in order to evaluate

the computational complexity of both tree-search and two-

stage tree-search algorithms. We have measured the com-

putational complexity in terms of the number of products

665

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on December 14, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

2 3 4 5 6 7 8 9 10 11 12 13
101

102

103

104

105

106

Users

A
ve

ra
ge

 n
um

be
r o

f p
ro

du
ct

s

Computational complexity (N=4)

Minimum distance search
Tree−search
2−stage

Figure 3. Average number of products for minimum distance and tree search
algorithm. A system with signal space dimension 𝑁 = 4 has been considered.

needed averaged over several transmitted signals and we have

considered a system with 𝑁 = 4 and increasing number

of users 𝑀 . In Fig. 3 results are shown for the tree-search

algorithm and the two-stage tree-search algorithm compared

to the exhaustive search that computes all distances.

Both algorithms present better performances than the ex-

haustive search. In particular the tree-search algorithm results

to be better than the two-stage tree-search.

This is because the computational cost of checking the equi-

librium condition is comparable with the distance computation.

The two-stage algorithm might have better performaces than

the tree-search only when 𝑁 is very large and the system is

underloaded.

IV. CONCLUSIONS

We have proposed two tree-search algorithms that provide

the exact ML solution with reduced computational complexity

with respect to the exhaustive minimum distance search. The

algorithms are based on the dominance condition and on the

HNN equilibrium condition, that provide simple conditions

for a reduction of the number of points for which compute

the euclidean distance. Numerical simultations have confirmed

that their computational complexity measured in terms of

products is better than the ML algorithm.

REFERENCES

[1] S. Verdú, Multiuser Detection. Cambrige University Press, 1998.
[2] J. Luo, K. Pattipati, P. Willett, and G. Levchuk, “Fast optimal and

suboptimal any-time algorithms for CDMA multiuser detection based
on branch and bound,” IEEE Transactions on Communications, vol. 52,
pp. 632–642, Apr. 2004.

[3] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels,” IEEE Transactions on Information Theory, vol. 45, no. 5,
pp. 1639–1642, 1999.

[4] W. H. Mow, “Universal lattice decoding: principle and recent advances,”
Wireless Communications and Mobile Computing, vol. 3, no. 5, pp. 553–
569, 2003.

[5] L. Ekroot and S. Dolinar, “A* decoding of block codes,” IEEE Trans-
actions on Communications, vol. 44, pp. 1052–1056, Sept. 1996.

[6] K.-K. Wong and A. Paulraj, “Efficient near maximum-likelihood detec-
tion for underdetermined mimo antenna systems using a geometrical
approach,” EURASIP Journal on Wireless Communications and Net-
working, 2007.

[7] X.-W. Chang and X. Yang, “An efficient tree search decoder with column
reordering for underdetermined MIMO systems,” in Global Telecommu-
nications Conference, 2007. GLOBECOM ’07. IEEE, pp. 4375–4379,
Nov. 2007.

[8] G. I. Kechriotis and E. S. Manolakos, “Hopfield neural network imple-
mentation of the optimal CDMAmultiuser detector,” IEEE Transactions
on Neural Networks, vol. 7, pp. 131–141, Jan. 1996.

[9] G. Kechriotis and E. S. Manolakos, “A hybrid digital signal processing-
neural network CDMA multiuserdetection scheme,” IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 43, pp. 96–104, Feb. 1996.

[10] Y. Sun, “A family of likelihood ascent search multiuser detectors: an
upper bound of bit error rate and a lower bound of asymptotic multiuser
efficiency,” to appear in IEEE Transactions on Communications, 2009.

666

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on December 14, 2009 at 06:49 from IEEE Xplore. Restrictions apply.

